Journal of Organometallic Chemistry, 381 (1990) 147-153 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20291

The synthesis and characterisation of two novel cyclopentadienylberyllium compounds

S.J. Pratten *, M.K. Cooper and M.J. Aroney **

Department of Inorganic Chemistry, University of Sydney, Sydney, New South Wales, 2006, (Australia) (Received July 7th, 1989)

Abstract

The syntheses of pentamethylcyclopentadienylberyllium chloride (CpMe₅BeCl) and the previously unreported pentamethylcyclopentadienylcyclopentadienylberyllium (CpMe₅BeCp) are described. The NMR and IR spectra of the two compounds are reported and discussed in terms of the bonding of the latter compound. The reaction between pentamethylcyclopentadienylberyllium chloride and dicyclopentadienylberyllium (BeCp₂) is also described.

Introduction

The work described below represents an extension of our previous work [1,2] on the controversy surrounding the structure and bonding of dicyclopentadienylberyllium (beryllocene). Pentamethylcyclopentadienylberyllium chloride (CpMe₅BeCl) was prepared as the result of attempts to synthesise the decamethyl derivative of dicyclopentadienylberyllium. It was then found that when solutions of CpMe₅BeCl and BeCp₂ were mixed, CpMe₅BeCp and CpBeCl were formed. Since we believed that the mixed ring compound CpMe₅BeCp might provide valuable insight into the BeCp₂ story, considerable effort was expended to obtain a pure sample for further study. The results of this effort are presented below.

Experimental

All solvents used in this work were meticulously dried and de-oxygenated immediately before use. Reactions were carried out by Schlenk techniques, and solutions were transferred by syringe and cannula via rubber septa. The extremely

^{*} Present address: Ironmaking Technology & Development, Broken Hill Proprietary Company Limited, PO Box 196B, Newcastle, N.S.W., 2300, Australia.

^{**} Author to whom correspondence should be addressed.

air-sensitive cyclopentadienylberyllium compounds were most conveniently transferred by vacuum sublimation; this had the added advantage that some purification takes place during each transfer. Melting points were determined on samples sealed in glass tubes under vacuum.

Beryllium chloride was unpacked in a nitrogen-filled glove-box, sieved to remove any beryllium oxide, and then transferred into Schlenk solid-addition tubes. Pentamethylcyclopentadiene was prepared by the method of Threlkel and Bercaw [3] from 2-bromo-2-butene, distilled under reduced pressure, then dried over sodium wire. CpBeCl was prepared as described earlier [1].

Infrared spectra were recorded from 4000 to 250 cm⁻¹ on a Perkin Elmer 457G double beam grating spectrophotometer using a 0.2 mm pathlength CsI solution cell fitted with rubber septa. Various solvents were used to overcome the problem of solvent absorption. The spectra were calibrated with polystyrene film and are believed to be accurate to ± 4 cm⁻¹ above 2000 cm⁻¹ and ± 2 cm⁻¹ below 2000 cm⁻¹. A Bruker WM-400 instrument was used for the recording of NMR spectra. The solutions, containing TMS as an internal reference, were sealed under nitrogen in 5 mm tubes. The mass spectrum of CpMe₅BeCl was recorded on an A.E.I. MS12 single focusing instrument by directly connecting a tube containing the sample to the gas inlet port. The inlet and source temperatures were 40 and 150 °C respectively, and an ionising voltage of 70 eV was used.

Synthesis of CpMe₅BeCl

Butyllithium (1.6 *M* in n-hexane, 57 ml) was added to pentamethylcyclopentadiene (12.8 g) at -78° C and the mixture stirred as it was allowed to warm slowly to room temperature. The resulting white precipitate of lithiumpentamethylcyclopentadienide was filtered off and then washed with n-pentane (3×20 ml). Diethyl ether (100 ml) was added, and the mixture cooled to -78° C. To the slurry, a solution of beryllium chloride (3 g) in diethyl ether (200 ml) was added slowly (10 min) with stirring. After a further 3 h stirring at room temperature the solvent was removed under reduced pressure and the product, contaminated with pentamethyl-cyclopentadiene, was sublimed (0.1 mmHg) into another flask. This crude product was then dissolved in a minimum of n-hexane and the solution cooled to 0° C. After 48 h the supernatant liquor was removed via a cannula through a rubber septum, leaving large colourless crystals. These were resublimed to yield crystals (1.4 g, 25% yield) of m.p. 110–112°C. The product was found to react violently with water and to decompose rapidly in air via highly coloured purple intermediates *.

A sample of the product was decomposed in distilled water and the chlorine content determined by titration with silver nitrate. Although the end-point was difficult to discern, the chlorine content was close to that expected for CpMe₅BeCl (found $17.7 \pm 2\%$; calc. 19.7%).

The identity of this compound was also confirmed by mass spectrometry. The fragmentation observed included the cleavage of the beryllium to ring bond, as well as successive loss of methyl substituents from the parent molecule. Fragmentation involving the loss of chlorine from the beryllium-ring moiety only occurred after the loss of three or more of the methyl groups.

^{*} The synthesis of CpMe₅BeCl was first reported by S.J. Pratten in 1985 [4]; more recently it was prepared by the reaction of bis(pentamethylcyclopentadienyl)magnesium with beryllium chloride [5].

Fig. 1. 400 MHz ¹H NMR spectra of $BeCp_2$ added to $CpMe_5BeCl$ in C_6D_{12} after (a) 2 min, (b) 1 h, (c) 3 h, (d) 8 h, and (e) 1 week.

Reaction between CpMe₅BeCl and BeCp₅

Solutions of CpMe₅BeCl and BeCp₂ (in C_6D_{12} or CDCl₃) were mixed and the resulting reaction monitored by ¹H NMR spectroscopy. The peaks due to BeCp₂ and CpMe₅BeCl were seen to diminish in intensity with time as three new peaks appeared (Fig. 1). This can be explained in terms of the equilibrium;

$BeCp_2 + CpMe_5BeCl \Rightarrow CpMe_5BeCp + CpBeCl$

Equilibrium was reached faster in $CDCl_3$ than in C_6D_{12} , and was found to lie further to the right in the polar solvent.

Synthesis of CpMe₅BeCp

Attempts to prepare a pure sample of the mixed ring compound by the reaction of CpBeCl and LiCpMe_s in a solvent were hampered by the equilibrium between the desired product and the CpBeCl reactant, as discussed above. In order to

Fig. 2. 400 MHz ¹³C NMR spectra of CpMe₅BeCp recorded at 25 °C in C₆D₆; (a) fully coupled, and (b) proton decoupled.

Table 1	
¹³ C NMR data for cyclopentadienyl beryllium compounds at 25°C	n a

Compound	Solvent	Ring carbons			Methyl carbons	
		δ	¹ J (C–H)	² <i>J</i> (C–H)	δ	¹ <i>J</i> (C-H)
BeCp ₂	C_6D_{12}	107.5	168	6		
CpMe, BeCl	$C_{6}D_{12}$	109.6		b	8.83	127
CpMe ₅ BeCp'	$C_6 D_6$	108.6		b	8.67	125
	0 0	106.0′	161	6		

^{*a*} Chemical shifts are given as δ values in ppm downfield from TMS and coupling constants are in Hz. ^{*b*} Coupling was not resolved.

overcome this problem, the reaction was performed in the absence of a solvent: CpBeCl (2.9 g) was melted (60 °C) in the presence of a stoichiometric excess of LiCpMe₅, prepared as above, and the mixture was kept at 60 °C for 4 h in a 50 ml Schlenk flask then extracted with n-pentane (5 × 20 ml). The combined extracts were reduced in volume to give a good yield of a yellow wax-like product. This was found by ¹H NMR spectroscopy to contain mostly CpMe₅BeCp, but with some contamination by CpMe₅BeCl, which was then removed by careful fractional sublimation *. After repeated slow sublimations, colourless, air-sensitive crystals of m.p. 25–27 °C were obtained that gave a ¹H NMR spectrum consisting of two sharp peaks. Additional evidence for the characterisation of the compound was obtained from the fully coupled and proton decoupled ¹³C NMR spectra (Fig. 2 and Table 1). The ¹H–¹³C coupling pattern observed is as expected for CpMe₅BeCp.

^{*} CpMe₅BeCp was the least volatile beryllium compound encountered in this study.

Results and discussion

Infrared spectra

The basis of this study is that π -bonded, σ -bonded, and ionically-bonded cyclopentadienyl groups exhibit characteristic vibrational spectra [6,7]. Comparison of the IR spectra of BeCp₂, CpBeCl, and CpBeBr with those of FeCp₂, CpHgCl, and HgCp₂, led to the conclusion that in BeCp₂ one ring is bonded in a pentahapto and the other in a monohapto fashion [1]. In this work, the IR spectrum of CpMe₅BeCp has been compared with those of CpMe₅BeCl, Fe(CpMe₅)₂, and

Table 2

Fe(CpMe ₅) ₂ ^{<i>a</i>}	CpMe5BeCl b	CpMe ₅ BeCp ^c	BeCp ₂ ^d
		3910w, b	3910w
			3170vw
			3110sh
		3075s	3080s
			3050sh
2980s			
2960s	2960m	2975s	
2910vs	2930vs	2927 s	
2865s	2875s	2865s	
	2780vw	2780vw	
		2765vw	
2715w	2740w	2735m	
		1750vw, b	
1478m	1495w	1495w	
1452m	1450vs, b	1445s, b	
1428m			1410sh
1378s	1384s	1380s	
		1365sh	1365m
		1105w, sh	1106w
1075 mw		1065w, sh	
	1055vs		
1032ms		1040m	
	1010m	990m	
			915sh
	905vvs		
			890sh
		835s, b	829m
		795w	
		775m	770ms
		735vs	
		660m	663s
595w		595m	
515mw			
455s			
375m	390s		
		368m	
		338s	

Comparison of IR data (cm⁻¹) for Fe(CpMe₅)₂, CpMe₅BeCl, CpMe₅BeCp, and BeCp₂

^{*a*} From Ref. 8. ^{*b*} Recorded in CCl₄. ^{*c*} Recorded in C_6D_6 and CS_2 . ^{*d*} Peaks due to the monohapto ring only (from Ref. 1).

BeCp₂ in an attempt to elucidate the nature of the bonding in the mixed-ring compound. The spectral data are shown in Table 2. In the case of BeCp₂, only the peaks that were previously assigned to the vibrations of the monohapto Cp-ring are listed [1]. The compound CpMe₅BeCl could reasonably be expected to have C_{5r} symmetry with a pentahapto ring as for CpBeCl *. Evidence for this comes from a comparison of the IR spectrum of CpMe₅BeCl with that of Fe(η^5 -CpMe₅)₂. Similarities are apparent, though the spectra are, of course, not identical.

The spectrum of $CpMe_5BeCl$ can be expected to exhibit two intense absorptions due to the beryllium-ring and beryllium-chlorine stretching vibrations, as found previously for $BeCp_2$, CpBeCl, and CpBeBr [1]; however, assignment of the beryllium-ligand frequencies was beyond the scope of this work.

The spectrum of CpMe₅BeCp shows virtually all of the spectral characteristics for a pentahapto CpMe₅ group, as observed for both $Fe(CpMe_5)_2$ and CpMe₅BeCl. This strongly suggests that CpMe₅BeCp in solution has a pentahapto-bonded CpMe₅ ring.

It can reasonably be inferred that the Cp group in CpMe₅BeCp is not pentahapto, since the two very distinct peaks found for CpBeCl, CpBeBr and BeCp₂ at ca. 1015 and 1125 cm⁻¹, and the combinations and overtones between 1800 and 2700 cm⁻¹ due to the pentahapto Cp-ring [1] are absent from the spectrum of CpMe₅BeCp. On the other hand, the strongest peak assigned [1] to a vibration of the monohapto Cp group in BeCp₂ (at 663 cm⁻¹) is clearly present, albeit at relatively lower intensity, at 660 cm⁻¹ in the spectrum of CpMe₅BeCp match closely peaks at 775, 1105, and 1365 cm⁻¹ in the spectrum of CpMe₅BeCp match closely peaks assigned [1] to the vibrations of the monohapto bonded Cp-ring in BeCp₂. It has been argued [10] that the peaks at 965 and 740 cm⁻¹ in the spectrum of BeCp₂ are also indicative of a monohapto Cp ring and not beryllium–ligand vibrations as assigned in ref. 1; these may correspond to the peaks at 990 and 735 cm⁻¹ in CpMe₅BeCp. Taken together, these observations indicate that the compound referred to above as CpMe₅BeCp is in fact (η^5 -CpMe₅)Be(η^1 -Cp).

NMR spectra

The ¹H NMR chemical shifts determined for the two compounds in C_6D_{12} and C_6D_6 are compared with those for CpBeCl, CpBeBr, and BeCp₂ in Table 3. Whereas upfield aromatic solvent-induced shifts (ASIS) are observed for the Cp protons of CpBeCl and CpBeBr [2], the Cp group of CpMe₅BeCp exhibits a downfield shift in the aromatic solvent, reflecting the electron donating power of the CpMe₅ substituent.

The 400 MHz ¹H NMR spectrum recorded at 25 °C for CpMe₅BeCp consists of two sharp peaks with integrals in the expected ratio of 3/1. In view of the conclusion from the IR spectra, the appearance of only two peaks indicates fluxional behaviour of the monohapto Cp-ring. Low-temperature ¹H NMR spectra were recorded for this compound (400 MHz) in a mixture of CCl₂F₂ and toluene- d_8 in an attempt to "freeze out" this dynamic behaviour. The peak widths at half-height were measured and normalised with respect to the width of the peak due to the

^{*} X-ray crystallographic analysis of a single crystal of CpMe₅BeCl was attempted [9]. The study indicated that the compound was of C_{5v} symmetry, but, the degree of refinement was insufficient for publication of the structure.

Table 3

Solute	Solvent		
	$\overline{C_6 D_{12}}$	C ₆ D ₆	
CpBeCl	6.27	5.66	
CpBeBr	6.30	5.66	
BeCp ₂	5.73	5.68	
CpMe ₅ BeCl	1.91	1.69	
	5.79	6.01	
CpMe ₅ BeCp			
· · ·	1.68	1.51	

¹H NMR shifts for cyclopentadienyl beryllium compounds at 25°C^{*a*}

^{*a*} Chemical shifts are given as δ values in ppm downfield from TMS.

Table 4

¹H NMR peak widths (Hz) at half-height for CpMe₃BeCp at various temperatures (400 MHz)

Temperature (°C)	observed	<u> </u>	normalized		
	Cp	CpMe ₅	Cp	CpMe ₅	
- 50	3.8	6.7	3.8	6.7	
- 100	4.6	6.7	4.6	6.7	
-135	6.7	7.0	6. 4 5	6.7	
-138	5.8	6.1	6.5	6.7	

CpMe₅ group, and the results are listed in Table 4. The observed broadening of the peak due to the Cp protons relative to that of the methyl peak suggests a slowing down of the "ring whizzing" at the lower temperatures. This is consistent with the conclusion drawn above from the IR spectra. It is possible, though, that this slight broadening may be due to viscosity effects in the solvent near its freezing point of ca. -140 °C.

Acknowledgments

The authors acknowledge the assistance and advice of Dr. L.D. Field, Dr. T.W. Hambley, Dr. K.W. Nugent, Mr. G.W. Allen, Mr. M.L. Edwards, and Mr. D. Nelson. The award of a Commonwealth Postgraduate Award (S.J.P.) is gratefully acknowledged.

References

- 1 S.J. Pratten, M.K. Cooper and M.J. Aroney, Polyhedron, 3 (1984) 1347.
- 2 S.J. Pratten, M.K. Cooper, M.J. Aroney and S.W. Filipczuk, J. Chem. Soc., Dalton. Trans., (1985) 1761.
- 3 R.S. Threlkel and J.E. Bercaw, J. Organomet. Chem., 136 (1977) 1.
- 4 S.J. Pratten, Ph.D. Thesis, University of Sydney, 1985.
- 5 C.J. Burns and R.A. Andersen, J. Organomet. Chem., 325 (1987) 31.
- 6 D.M. Adams, Metal-Ligand and Related Vibrations, Edward Arnold, London, 1967, p. 189.
- 7 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, 1978, p. 391.
- 8 D.M. Duggan and D.N. Hendrickson, Inorg. Chem., 14 (1975) 955.
- 9 T.W. Hambley, University of Sydney, unpublished work.
- 10 K.W. Nugent and J.K. Beattie, Inorg. Chem., 27 (1988) 4269.